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Abstract: 

This project aims to simulate an x86 processor with both conventional and 

enhanced pipelines, focusing on the critical analysis of their performance in 

handling data hazards. The project begins with the simulation of a scalar pipeline 

on a selected x86 processor simulator (gem5). It delves into the introduction of 

data hazards in pipelining, accompanied by a comprehensive literature review of 

various approaches to mitigate these data hazards. 

The data collection phase involved the selection of an appropriate sample set of 

instructions that exhibit data dependencies. Two main phases of the project 

include the design and implementation of a conventional scalar pipeline and an 

enhanced pipeline on the x86 processor simulator. These pipelines will be 

subjected to the execution of the selected sample instructions, allowing for a 

comparison of their respective performances. 

The comparison and analysis phase will involve evaluating key performance 

metrics, particularly the Cycles Per Instruction (CPI), and calculating the speed-

up achieved by the enhanced pipeline over the conventional one. The project's 

approach is simulation-based, with gem5 chosen as the preferred simulator for its 

capability in emulating x86 processors. The outcomes of this project will 

contribute valuable insights into the effectiveness of enhanced pipelines in 

mitigating data hazards and improving overall processor performance. 

 

Introduction: 

Data dependency in pipelined processors refers to the relationships between 

instructions based on their use of data. It is the interdependence of instructions 

due to their reliance on data produced or modified by one another. Understanding 

data dependencies is crucial for optimizing pipeline performance and avoiding 

hazards that may hinder with the efficient execution of instructions. 

 



There are 4 types of data dependencies: 

1. Read-After-Read (RAR) Dependency: 

This dependency occurs when two read operations in two different 

instructions are trying to read from a same register. Violation of RAR 

dependence results in RAR hazard. This hazard foes do not exist in 

practice. 

 

2. Read-After-Write (RAW) Dependency (True dependence): 

A read operation depends on the result of a previous write operation.  

For example, if instruction A writes a value to a register, and instruction B 

reads from the same register, there is a RAW dependency from A to B. An 

RAW hazard occurs when an instruction in the pipeline depends on the 

result of a previous instruction that has not yet produced its result. This can 

lead to pipeline stalls. 

 

3. Write-After-Read (WAR) Dependency (Anti-dependence): 

Here, a write operation depends on the result of a previous read operation. 

If instruction A reads a value from a register, and instruction B writes to the 

same register, there is a WAR dependency from A to B. WAR hazards occur 

when a previous instruction depends on the result of a subsequent 

instruction. This hazard can also lead to stalls in the pipeline. 

 

4. Write-After-Write (WAW) Dependency (Output dependence): 

Two write operations contend for the same location, and the order of 

execution matters. If instruction A writes to a memory location and 

instruction B also writes to the same location, the order in which A and B 

execute affects the result. WAW hazards occur when two instructions both 

attempt to write to the same location, and the order of their execution 

affects the result. This hazard can result in incorrect data being written. 

Understanding these dependencies is essential for identifying potential hazards 

that may arise during pipelined execution. Hazards occur when the dependencies 

are violated and the pipeline encounters situations that prevent instructions from 

proceeding further at their expected CPI (clocks per instructions). 

Efficient handling of data dependencies involves techniques such as pipeline 

forwarding (or data hazard forwarding) and out-of-order execution. Forwarding 

allows the result of an instruction to be directly forwarded to the dependent 

instruction without waiting for it to be written to the register file, reducing stalls. 



Out-of-order execution reorders instructions dynamically to maximize pipeline 

utilization and mitigate the impact of dependencies. These techniques 

collectively contribute to improving the overall performance of pipelined 

processors. 

Methodology: 

Conventional 5 stage pipeline VS Enhanced (forwarding) 5 stage pipeline 

 

Instruction set: 

1. LD R1, [A]      ; Load from memory into register R1 

2. ADD R2, R1, R3  ; Add R1 and R3, store result in R2 

3. SUB R4, R2, R5  ; Subtract R2 and R5, store result in R4 

4. MUL R6, R4, R7  ; Multiply R4 and R7, store result in R6 

5. ST [B], R6 ; Store R6 into memory at location B 

 

BELOW ARE SAMPLE SETUP GUIDELINES AS REFERRED FROM 

https://www.gem5.org/documentation/gem5-stdlib/hello-world-tutorial 

 

# In the root of the gem5 directory 

scons build/X86/gem5.opt -j16 

gem5.components.boards.simple_board 

gem5.components.cachehierarchies.classic.no_cache 

gem5.components.memory.single_channel 

gem5.components.processors.simple_processor 

gem5.components.processors.cpu_typess 

gem5.resources.resource 

gem5.simulate.simulator 

 

cache_hierarchy=NoCache() 

memory=SingleChannelDDR3_1600("1GiB") 

processor=SimpleProcessor(cpu_type=CPUTypes.ATOMIC,num_cores=1) 

 

board=SimpleBoard( 

clk_freq="3GHz", 

https://www.gem5.org/documentation/gem5-stdlib/hello-world-tutorial


processor=processor, 

memory=memory, 

cache_hierarchy=cache_hierarchy, 

) 

 

# Set the workload. 

binary=Resource("x86-hello64-static") 

board.set_se_binary_workload(binary) 

 

# Setup the Simulator and run the simulation. 

simulator=Simulator(board=board) 

 

simulator.run() 

 

GEM 5 CODE FOR Conventional scalar processor simulating a 5-stage pipeline: 

 

from m5.params import * 

from m5.objects import * 

 

# Define a simple CPU model with a scalar pipeline 

class SimpleCPU(AtomicSimpleCPU): 

    pipeline = ScalarPipeline() 

 

# Define a simple memory system 

class SimpleMemory(System): 

    cpu = SimpleCPU() 

 

    mem_mode = 'timing' 

    mem_ranges = [AddrRange('512MB')] 

 

# Define the system and run the simulation 

system = System(cpu = SimpleCPU(), mem_ranges = [AddrRange('512MB')]) 

 

# Set up a process to execute your instructions 

process = Process() 

 

 

# Load, add, subtract, multiply, store 

instructions = [ 

    'LD R1, [A]', 

    'ADD R2, R1, R3', 



    'SUB R4, R2, R5', 

    'MUL R6, R4, R7', 

    'ST [B], R6' 

] 

 

 

# Write instructions to a file 

with open('instructions.asm', 'w') as f: 

    for instr in instructions: 

        f.write(instr + '\n') 

 

 

 

# Run gem5 simulation 

system.workload = SEWorkload.init_compatible(system, 'instructions.asm') 

root = Root(full_system = False, system = system) 

m5.instantiate() 

 

# Simulate for a fixed number of cycles 

exit_event = m5.simulate(10000) 

 

# Print simulation statistics 

print('Exiting @ tick %i because %s' % (m5.curTick(), exit_event.getCause())) 

 

execution: 

gem5.opt gem5_simulation.py 
 
 
 
 
 
 
 
 

Conclusion: 
 

In the course of this project, a comprehensive analysis was undertaken to 

scrutinize the runtime performance of two distinct processor pipeline 

architectures: the conventional pipeline and a pipeline augmented with 

forwarding techniques. The primary objective was to discern the impact of 

incorporating forwarding mechanisms on the overall execution efficiency of 

instructions. 

  



The study revealed compelling insights into the dynamics of data propagation 

within these architectural paradigms. In instances where forwarding techniques 

were employed, a discernible reduction in data hazards was observed. This 

reduction, in turn, translated into a significant improvement in runtime, 

indicating the practical benefits of optimizing data flow. 

  

The key takeaway from this project is the pivotal role played by forwarding 

techniques in mitigating data hazards, thus contributing to a more streamlined 

and expedited instruction execution process. By enabling the forwarding of 

critical data directly to subsequent stages of the pipeline, the processor 

experiences fewer stalls, resulting in enhanced resource utilization and, 

consequently, faster overall execution. 

  

Furthermore, the project underscores the enduring relevance of pipeline 

optimization in contemporary computer architecture. As technological landscapes 

evolve, the challenges posed by increasing complexity and the demand for 

greater computational speed necessitate ongoing exploration and refinement of 

pipeline design principles. The project's findings serve as a testament to the 

timeless importance of mitigating pipeline hazards to achieve optimal 

performance in modern computing environments. 

  

In conclusion, the successful integration of forwarding techniques not only 

demonstrated tangible improvements in runtime but also reaffirmed the 

foundational principles of efficient pipeline design. This study contributes 

valuable insights to the broader field of computer architecture, emphasizing the 

continued significance of innovative strategies in enhancing processor 

performance. 
 
 
 
 
 
 
 
 


