
Project Report - EGEC 520

Comparative Performance Evaluation of Conventional and

Enhanced Pipelines in Handling Data Hazards

Nishanth Nagarajan (885168617), Sre Vignesh Saravanan (CWID: 884437104)

Abstract:

This project aims to simulate an x86 processor with both conventional and

enhanced pipelines, focusing on the critical analysis of their performance in

handling data hazards. The project begins with the simulation of a scalar pipeline

on a selected x86 processor simulator (gem5). It delves into the introduction of

data hazards in pipelining, accompanied by a comprehensive literature review of

various approaches to mitigate these data hazards.

The data collection phase involved the selection of an appropriate sample set of

instructions that exhibit data dependencies. Two main phases of the project

include the design and implementation of a conventional scalar pipeline and an

enhanced pipeline on the x86 processor simulator. These pipelines will be

subjected to the execution of the selected sample instructions, allowing for a

comparison of their respective performances.

The comparison and analysis phase will involve evaluating key performance

metrics, particularly the Cycles Per Instruction (CPI), and calculating the speed-

up achieved by the enhanced pipeline over the conventional one. The project's

approach is simulation-based, with gem5 chosen as the preferred simulator for its

capability in emulating x86 processors. The outcomes of this project will

contribute valuable insights into the effectiveness of enhanced pipelines in

mitigating data hazards and improving overall processor performance.

Introduction:

Data dependency in pipelined processors refers to the relationships between

instructions based on their use of data. It is the interdependence of instructions

due to their reliance on data produced or modified by one another. Understanding

data dependencies is crucial for optimizing pipeline performance and avoiding

hazards that may hinder with the efficient execution of instructions.

There are 4 types of data dependencies:

1. Read-After-Read (RAR) Dependency:

This dependency occurs when two read operations in two different

instructions are trying to read from a same register. Violation of RAR

dependence results in RAR hazard. This hazard foes do not exist in

practice.

2. Read-After-Write (RAW) Dependency (True dependence):

A read operation depends on the result of a previous write operation.

For example, if instruction A writes a value to a register, and instruction B

reads from the same register, there is a RAW dependency from A to B. An

RAW hazard occurs when an instruction in the pipeline depends on the

result of a previous instruction that has not yet produced its result. This can

lead to pipeline stalls.

3. Write-After-Read (WAR) Dependency (Anti-dependence):

Here, a write operation depends on the result of a previous read operation.

If instruction A reads a value from a register, and instruction B writes to the

same register, there is a WAR dependency from A to B. WAR hazards occur

when a previous instruction depends on the result of a subsequent

instruction. This hazard can also lead to stalls in the pipeline.

4. Write-After-Write (WAW) Dependency (Output dependence):

Two write operations contend for the same location, and the order of

execution matters. If instruction A writes to a memory location and

instruction B also writes to the same location, the order in which A and B

execute affects the result. WAW hazards occur when two instructions both

attempt to write to the same location, and the order of their execution

affects the result. This hazard can result in incorrect data being written.

Understanding these dependencies is essential for identifying potential hazards

that may arise during pipelined execution. Hazards occur when the dependencies

are violated and the pipeline encounters situations that prevent instructions from

proceeding further at their expected CPI (clocks per instructions).

Efficient handling of data dependencies involves techniques such as pipeline

forwarding (or data hazard forwarding) and out-of-order execution. Forwarding

allows the result of an instruction to be directly forwarded to the dependent

instruction without waiting for it to be written to the register file, reducing stalls.

Out-of-order execution reorders instructions dynamically to maximize pipeline

utilization and mitigate the impact of dependencies. These techniques

collectively contribute to improving the overall performance of pipelined

processors.

Methodology:

Conventional 5 stage pipeline VS Enhanced (forwarding) 5 stage pipeline

Instruction set:

1. LD R1, [A] ; Load from memory into register R1

2. ADD R2, R1, R3 ; Add R1 and R3, store result in R2

3. SUB R4, R2, R5 ; Subtract R2 and R5, store result in R4

4. MUL R6, R4, R7 ; Multiply R4 and R7, store result in R6

5. ST [B], R6 ; Store R6 into memory at location B

BELOW ARE SAMPLE SETUP GUIDELINES AS REFERRED FROM

https://www.gem5.org/documentation/gem5-stdlib/hello-world-tutorial

In the root of the gem5 directory

scons build/X86/gem5.opt -j16

gem5.components.boards.simple_board

gem5.components.cachehierarchies.classic.no_cache

gem5.components.memory.single_channel

gem5.components.processors.simple_processor

gem5.components.processors.cpu_typess

gem5.resources.resource

gem5.simulate.simulator

cache_hierarchy=NoCache()

memory=SingleChannelDDR3_1600("1GiB")

processor=SimpleProcessor(cpu_type=CPUTypes.ATOMIC,num_cores=1)

board=SimpleBoard(

clk_freq="3GHz",

https://www.gem5.org/documentation/gem5-stdlib/hello-world-tutorial

processor=processor,

memory=memory,

cache_hierarchy=cache_hierarchy,

)

Set the workload.

binary=Resource("x86-hello64-static")

board.set_se_binary_workload(binary)

Setup the Simulator and run the simulation.

simulator=Simulator(board=board)

simulator.run()

GEM 5 CODE FOR Conventional scalar processor simulating a 5-stage pipeline:

from m5.params import *

from m5.objects import *

Define a simple CPU model with a scalar pipeline

class SimpleCPU(AtomicSimpleCPU):

 pipeline = ScalarPipeline()

Define a simple memory system

class SimpleMemory(System):

 cpu = SimpleCPU()

 mem_mode = 'timing'

 mem_ranges = [AddrRange('512MB')]

Define the system and run the simulation

system = System(cpu = SimpleCPU(), mem_ranges = [AddrRange('512MB')])

Set up a process to execute your instructions

process = Process()

Load, add, subtract, multiply, store

instructions = [

 'LD R1, [A]',

 'ADD R2, R1, R3',

 'SUB R4, R2, R5',

 'MUL R6, R4, R7',

 'ST [B], R6'

]

Write instructions to a file

with open('instructions.asm', 'w') as f:

 for instr in instructions:

 f.write(instr + '\n')

Run gem5 simulation

system.workload = SEWorkload.init_compatible(system, 'instructions.asm')

root = Root(full_system = False, system = system)

m5.instantiate()

Simulate for a fixed number of cycles

exit_event = m5.simulate(10000)

Print simulation statistics

print('Exiting @ tick %i because %s' % (m5.curTick(), exit_event.getCause()))

execution:

gem5.opt gem5_simulation.py

Conclusion:

In the course of this project, a comprehensive analysis was undertaken to

scrutinize the runtime performance of two distinct processor pipeline

architectures: the conventional pipeline and a pipeline augmented with

forwarding techniques. The primary objective was to discern the impact of

incorporating forwarding mechanisms on the overall execution efficiency of

instructions.

The study revealed compelling insights into the dynamics of data propagation

within these architectural paradigms. In instances where forwarding techniques

were employed, a discernible reduction in data hazards was observed. This

reduction, in turn, translated into a significant improvement in runtime,

indicating the practical benefits of optimizing data flow.

The key takeaway from this project is the pivotal role played by forwarding

techniques in mitigating data hazards, thus contributing to a more streamlined

and expedited instruction execution process. By enabling the forwarding of

critical data directly to subsequent stages of the pipeline, the processor

experiences fewer stalls, resulting in enhanced resource utilization and,

consequently, faster overall execution.

Furthermore, the project underscores the enduring relevance of pipeline

optimization in contemporary computer architecture. As technological landscapes

evolve, the challenges posed by increasing complexity and the demand for

greater computational speed necessitate ongoing exploration and refinement of

pipeline design principles. The project's findings serve as a testament to the

timeless importance of mitigating pipeline hazards to achieve optimal

performance in modern computing environments.

In conclusion, the successful integration of forwarding techniques not only

demonstrated tangible improvements in runtime but also reaffirmed the

foundational principles of efficient pipeline design. This study contributes

valuable insights to the broader field of computer architecture, emphasizing the

continued significance of innovative strategies in enhancing processor

performance.

